location1(Input,slot("LOCATION=",X)):- locat1(Input,X).
location2(Input,slot("L OCATION=",X)):- locat2(Input,X).
locat1(input,cons(X,List)):- loc(Input,X), locat2(input,List).
locat2(input,cons(X,List)):- loc(Input,X), locat2(Input,List).
locat2{__,nil).
loc(s(__,_, , ,Vmods), Slot):-

flll_slot(Vmods,['ALONG','AT'.'EAST OF','lN','OVER'],'LOC',Slot).
loc(s(_, _,NP,_, )NP):~- test_nhead(NP,'LOC").

3.3.3.7 ‘mission’

mission(s(_,_, , ,Vmods),slot("MISSION=", Slot)):-

fill__slot(Vmods, ['AFTER’, 'FROM','IN','ON'], 'ACTY", Siot).
mission(s(_,_,NP,_, ),slot(’MISSION="NP)):- test_nhead(NP,'NOMZ").
mission(__,nil).

3.3.3.8 ‘nationality’

nationality(List, Feature,slot("NATIONALITY=', W)):- member(nnode(W,_ ) List),
feat(W.Feature).

nationality(List, Feature,slot("NATIONALITY="W)):- member(W, List),
feat(W,Feature).

nationality(__,  nil).

3.3.3.9 ‘object’

object1 (NP,slot('OBJECT=', Slot)):- test__nhead(NP,'’ACRAFT"),
construct("AIRCRAFT’,NP, Siot).

3.3.3.10 ’path’

path(Vmods,slot("PATH=', Siot)):- fill__slot(Vmods,['VIA'],'LOC’,Slot).
path(__,nil).

3.3.3.11 'setspec’

setspec(dp(_, _ ,Num),slot("NUMBER=",Num).
setspec(__, nil).

3.3.3.12 'source’

source1(Vmods,slot('SOURCE=", Slot):~ till__slot(Vmods,['FROM'),"LOC",Siot).
source2(X,Y):~ source1(X,Y).
source2 (__,nil).

3.3.3.13 'stagingbase’

stagingbase(List,slot("STAGINGBASE =", Slot):- fill_slot(List,['AT"}, t
'LOC",Slot). i

stagingbase(__,nil).
3.3.3.14 'subordination’

subordination(List,slot(SUBORDINATION="),Slot)):-
fill_stot(List,[ 'FROM'],'SUBNUM', Slot)
subordination(__,nil).




3.3.3.15 ‘them' (the threat)

them(Vmods,slot('THEM=", Slot):-
fill_slot(Vmods, ['AGAINST'], 'NATION', Stot).
them(__,nil).

3.3.3.16 ‘time’

time(Vmods,slot('TIME=’, Slot):-
find__time(Vmods,['AT',"BETWEEN’,"BY’,'DURING’,'SINCE’],’TYME’,
Slot).
time(Vmods,slot('TIME=",Slot): -
find__ time(Vmods.['AT','BETWEEN',’BY','DURING','SINCE'].'4DIG',
Slot).
time(Vmods,slot('TIME=" Siot): -
ﬁll_‘slot(Vmods,['AT'.'BETWEF_N','BY','DURING','SINCE’].'TYME',
Slot).
time(Vmods,slot('TIME=", Slot):-
fill__slot(Vmods, 'TYME' Slot).

time(__,nil).

3.3.4 Other Procedures
3.3.4.1 ‘tilleslot’

fill__slot(List, Preplist, Feature,[L1,Prep,NP]):-
member (pp(L1,Prep,NP),List),
member(Prepa, Preplist),lexeq(Prep,Prepa),
test__nhead(NP, Feature).

Given the Vmods list, a list of prepositions Preplist, and a lexical feature Feature,
"fill_slot’ searches the Vmods list for a prepositional phrase (pp), such that Prep is a
member of Preplist and the headnoun of NP has the feature Feature. 'fill_slot' returns
the prepositional phrase 'pp’.

fill__slot(List, Feature W):-
member(Wa, List),lexeq(W,Wa),
feat(W,'ADVB"),
feat(Ww, Feature).

Given the Vmeds list and a lexical feature Feature, fill__slot' searches the Vmods list for
an adverb with feature Feature,and returns the adverb.

fill_slot(NP, Feature NP):- test_ nhead(NP,'LOC").
3.3.4.2 'find«feat’

find__feat(W,L,Y):-
member(Y,l),
feat(w,Y).

'find_. feat' takes as arguments the dictionary entry of a word W, a list of atoms naming
templates available in the system (L), and returns a value for the variable Y, such that Y
Is a member of L, and Y is a feature of W. '

1-26




3.3.4.3 ‘find«tename’ 'Find__t_name' is a procedure for finding the name of the tem-
plate to be activated for the interpretation of a particular input structure. 'find_ t _name'
has two entry points according to whether the template name sought is derivable from a
verbgroup or from a noun .

3.3.4.3.1 The template name is derivable from a verbgroup:-

find_t__name(vg(_, , ,W)Name):-
find__feat(W,['ARRIVE’,DEPART',DEPLOY’,'"ENROUTE", FLI GHT',
'LOCATE’,'PENETRATE’,’PRECEDE’, RECOVER’,
'RETURN'],Name).

3.3.4.3.2 The template name is derivable from a noun:-

find__t_ name(nnode(W,_ ),Name):-
find__ feat(W,['AIRCRAFT'],Name).

3.3.4.4 ‘find«time’

find__time(List, Preplist, Feature,[L1,W,L2]):- :
member(pp(L1,W,L2),List),
member(Wa,Preplist), lexeq(W,Wa),
member(X,L2),
feat(X,Feature).

3.3.4.5 ‘testenhead’
test__nhead(np(_,_,nnode(W,_), ),Feature):- feat(W,Feature).

'test_nhead’ determines whether the head noun (W) of the input np the feature
Feature.

3.3.4.6 Listdefinition

list([]).
list(X,L):- list(L).

3.3.4.7 Llistmembership

member(X,[X,.._]).
member(X,[_,..L]):- member(X,L).

3.3.5 Syntactic Normalization Rules.

3.3.5.1 Nominalizations. The rules listed below apply to nominalizations in subject posi-
tion and/or nominalizations in object position.

3.3.56.1.1 Restructuring 'Passive’ Nounphrases.

Example: A WEATHER RECONNAISSANCE FLIGHT BY ONE
PRETORIA BASED SP-2656 B-80 (BEACON)
TO THE CAPE VERDE ISLANDS.

change(np(Det,[L1,X], nnode(W,0),[X1,pp(_,by,Y),X2]),
s(Y,vg(_,_,_ W)np(Det,L1,nnode(X,0),[ ], .[X1,X2]):~
test_ nhead(Y,'NOMZ’).




W

3.3.5.1.2 Restructuring 'Active’ Nounphrases
Example1: UAF B-75 DEPLOYMENTS TO MAURITIUS

change(np(Det,[L1,X],nnode(W,0),L2),
s(np(Det,L1,nnode(X,0),[D.va(_, , ,W),0,0,L2)).

Example?2: DEPLOYMENT OF 12 AIRCRAFT TO KIGALI

change(np(Det1,L1, nnode(W1,pp(__,of np(Det2, L2,nnode({W2,0),[ D)), L3),
s(np(0,[L2],nnode(W2,0),[]),va(__,_,_,W1),0,0,L3)):~
feat(W2 acraft').

3.4 Event Record Synthesis, an Example

Before presenting an example of how templates are executed by ERL, a word should be
said about the control mechanism employed by the system.

3.4.1 The ERL Control Mechanism. Prolog provides a remarkably simpie form of control,
which suffices for many practical applications.

The declarative semantics of Prolog clauses is such that the ordsr of the goals in a
clause and the order of the clauses themselves are both irrelevant to the declarative
interpretation. However, these orderings are generally significant in Prolog, as they con-
stitute the main control information.

When the Prolog system is executing a procedure call, the clause ordering determines
the order in which the different entry points of the procedure are tried. The goal order-
ing fixes the order in which the procedure calls in a clause are executed. The ’produc-
tive' effect of a Prolog computation arises from the process of 'matching’ a procedure
call against a procedure entry point,

3.4.2 Step by Step Description of the Synthesis Process. In this section we describe by
means of an example how ERL template representations drive event record synthesis.
Consider the following example:

(1) THIS AIRCRAFT ROUTINELY PRECEDES UAF B-75 DEPLOYMENTS TO MAURITIUS.

As pointed out previously, one of the basic principles underlying our approach to the
cantent analysis of narrative text is that the structural descriptions at all levels of
analysis should be homogeneous. Sentence (1) above was chosen precisely because it
allows us to show how the same formalism lends itself naturally to the description of
structures and processes at several levels of grammatical description thus providing &
homogeneous approach to the interpretation of the syntactic structures output by the
ATN. Specifically, the levels of grammatical description involved in the analysis of (1)
are;-

® syntactic normaiization;
e the description of objects (aircraft);
® the description of an atomic event ('deployments");

® the description of a text-level refation (‘precede’).

Sentence (1) states that certain deployments are routinely preceded by a certain flight.
Notice that syntactically, (1) is a simple sentence of the form Subject, Verb, Object.
Conceptually, however, it is a complex structure in which the main verb 'precede’
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functions as a text-level relation locating two events on the time line. The two events
are linguistically encoded as the subject and the object of the verb 'precede’. Note that
the subject is 'this aircraft’ which, although syntactically a simple noun phrase describ-
Ing an object, is understood as 'the flight of this aircraft’, i.e., it is understaod as the
description of an event. This is information which does not reside in the actual text, and
which will eventually be supplied by an inferential component utilizing extralinguistic
knowledge stored in the system. The current version of ERL lacks the necessary
inferential mechanisms which would supply this information. 'This aircraft’, therefore, is
interpreted as the description of an object. As mentioned above, 'precede’ relates two
events on the time axis. 'Precede’, then, is a relation which has two arguments: a
‘predecessor’ and a 'successor’. As indicated above, the first argument of 'precede’ -~
the ’predecessor’-- will be an aircraft description. The second argument of 'precede’--
the ’successor’ -- will be the interpretation of the syntactic object of the sentence.
ERL utilizes a normalization rule to transform the latter into a sentential structure which
Is then further interpreted by rules of semantic interpretation, and transformed into an
event record of type 'deploy’.

A diagrammatic representation of the final output of the event record synthesizer}is
given in Figure 1, which is read as follows:~

The record is of type 'precede’. The 'predecessor’ describes an object of type 'aircraft’,
while the 'successor’ describes an event of type 'deploy’. The objects being deployed
are UAF B-75s, and the destination of these aircraft is Mauritius.

| | . ol
{Destination: TO MAURITIUS |

| Precede ki 1
| Modifier: ROUTINELY |Aircraft | {
| Predecessor: -------- > |Equipment: THIS AIRCRAFT | |
| | | l
I |
I e ~ - Lkt
| |Deploy s 1%
| jObject: —->]Aircraft e
| | | Equipment: B-75 | | |
| Successor: ---————-—-- > |Service: UAF I
| | i
| |
I 1
| |
| |

!

Figure 1. Content Representation of "THIS AIRCRAFT ROUTINELY
PRECEDES UAF B~75 DEPLOYMENTS TO MAURITIUS".

3.4.2.1 The Initiation of the Synthesis Process. In this section we give a detailed step
by step description of the event record synthesis process as executed by MATRES [l
As explained in a previous section, the EBL semantic interpretation rules (clauses) are
used top-dowrn, one at a time. Goals in a clause are executed from left to right. I there
are alternative clauses at any point, backtracking will return to them. To see how parse
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trees are interpreted by ERL, consider (2), which is the parse tree of sentence (1):-

(2) s(np(dp(0, THIS,0),[ ], nnode(AIRCRAFT,0),[] ),
va([ROUTINELY],[ ].0,PRECEDES),
np(0,| nnode(UAF,0),nnode(B-76,0)],
nnode(DEPLOYMENTS,0),
[pp([ 1.TO,np(0,[ ].anode(MAURITIUS,0),L 1) .
ol D.

For simplicity of exposition we will henceforth refer to structure (2) as 'Tree_in".

The synthesis process involves the execution of the system-generated goal (3):

(3) :- build_ER ('Tree _in' ER).
'‘build_ ER' clauses have two arguments: the input structure '"Tree_ in', which in our case
is the structure given in (2), and an output structure ER, which is the content represen-
tation of 'Tree__in". . : :

3.4.2.2 Activation of Template. Since 'Tree_in' in our example Is a sentential structure,
goal (3) unifies with the head of the first cliause of the 'build_ ER' procedure (4):

(4) build_ER (s(Subj,Vbgr,0bj,Compl,Vmods),ER):~
find__t _name(Vbgr,Name),
construct(Name, Tree_in' ER).

This results in the following instantiations:

(6) Subj = np(dp(0,THIS,0),[ J,nnode(AIRCRAFT,0),[ ]):
Vbgr = vg({ROUTINELY],| ].O.PRECEDE S);
Obj = np(0,[nnode(UAF ,0),nnode(B-75,0)],
nnode(DEPLOYMENTS,0),
[pp(]],70,np(0,[ ].nnodu(MAURITlUS,O).[]))]);
Compl = O; )
Vmods = [].
The body of the matching clause instance (4) also gives rise to the two new subgoals
(6) and (7):
(8) find_t name(va([ROUTINELY][].0,PRECEDES),Name).

(7) construct(Name,
s(np(dp(0.THIS,0).[ ,nnode(AIRCRAFT,0).{ 1),
va([ROUTINELY] [ .O.PRECEDES),
np(0,] nnode(UAT 0).nnode(B-75,0)].
nnode(DEPLOYMENTS,0),
[pp([ 1.TO.np(0 [ f.nnode(MAURTT ws,oMmh.

o[ D.ER).
The first task is to identify the template required for the interpretation of (2). This is
achieved by executing goal (6) listed above.
Goal (6) matches the head of the first clause of the 'find_ t _name' procedure (see 8). 1t
produces the instantiations in (9), and yields the new goal (10):-




(8) find_t_name(vg(__, , _,W),Y):-
find__feat(W,L,Y).

(9) W-=’precedes' ; Y = Name

(10) find__feat ('precedes’, [list of event template names], Name).
Goal (10) in turn unifies with the head of the 'find_ feat’' clause (11)

(11) find_feat (W,L,Y):~
mem (Y,L),
feat (W,Y).

This creates the following instantiation (12):-

(12) find__feat ('precedes’, [list of event template names], Name):-
mem(Name,[list of event template names]),
feat(’precedes’, Name).

The execution of the subgoals of (12) result in the instantiations (13):-

(13.1) Name = 'Precede’, and
(13.2) construct(’precede’, Tree-in’, ER).
where (13.2) is still only a partial instantiation of (7).

Goal (6) is now fully instantiated, i.e., the name of the template sought was found to be
‘precede’.The system now proceedes to execute second goal set up by executing (3),
namely goal (7), now instantiated to (13.2). Executing this goal results in the instantia-
tion of the two arguments of 'precede’, namely, E7 and E2.

3.4.2.3 Instantiating the Arguments of ‘PRECEDE' The reader is reminded that the verb
‘precede’ is a two-place predicate whose interpretation in the environment of a subject
E1 and an object E2 is ’before(E1,E2)’. The 'construct’ procedure for 'precede’ seeks to
find fillers for the two arguments E1 and E2. To achieve this result, goal (13.2) unifies
with the head of the ’contsruct’ clause for 'precede’ (14), and sets up the two subgoals
(14.1) and (14.2):-

(14) construct ('precede’, s(Subj,__,0bj, _, ), [E1,E2]):-
(14.1) build__ER(Subj,E1),
(14.2) build__ER(Obj, E2).

where, according to (5),

Subj=np (dp(0,THIS,0),[ ],nnode(AIRCRAFT,0),[1);

Obj=np(0,[nnode(UAF,0),nnode(B-75,0)],
nnode(DEPLOYMENTS,0),
[pp([1,70,np(0,[],nnode(MAURITIUS,0),[ D).

The next step is to execute goals (14.1) and (14.2).

3.4.2.4 Interpreting the Syntactic Subject. The partially instantiated goai (14.1) is
shown in (15):-

(15) build_ER(np(dp(0,THIS,0),] ],nnode(AIRCRAFT),0),[ 1),ER).

Since the first argument of (15) is a nounphrase, it will unify with the head of the
second ’'build__ER’ clause (16):-




(16) build__ ER(np(Det,L1 N(W, )L12)ER):-
feat(W,'NOMZ"),
change(np(Det,L 1, N(W, ) 12),T1),
build__ ER(T1,ER).

However, the first goal of clause (16) requires that the headnoun have the feature
'NOMZ'. This is not the case in our example, so that the first goal fails. The system now
backtracks, i.e., it rejects the most recently activated clause (16) undoing any substitu-
tions made by the match with the head of the clause. Next, it reconsiders the original
goal (15) which activated the rejected clause, and tries to find a subsequent clause
which also matches the goal. As a result, goal (15) now unifies with the head of the
third 'build__ER’ clause (17):-

(17) build_ER(np(Det,L1,Noun,2),ER):-

(17.1) find_t_name(Noun,Name),

(17.2) construct(Name,np(Det,L1,Noun,L2),ER).

This results in the following instantiations:-

(18) Det = dp(0,THIS,0);
L1 =[}
Noun = nnode(AIRCRAFT,0);
L2 =[}
E1=ER.

The first goal of (17) unifies with (19):-

(19) find__t_name(nnode(W,0),Y):-
find__ feat(w,[ 'aircraft’, 'DTG’, etc], Y).

The procedure here is similar to that described earlier. As a result of the unification pro-
cess, and of executing (19), we have the following instantiation:-

W = 'AIRCRAFT’

Y = Name = 'aircraft'.

Clause (17.1) is now fully Instantiated -- the template sought has been found to be the
'aircraft’ template. The system proceedes to the execution of goal (17.2).

Goal (17.2) is now partially instantiated to (20):-

(20) construct(Taircraft’, np(0,THIS,0),[ ],
nnode(AIRCRAFT,0),[ 1),ER).

Goal (20) activates the 'construct’ procedure for ‘aircraft’, which fills the 'equipment’

slot with "this aircraft’, and leaves all other slots empty. The result of executing (20)
is:=

aircraft

El = equipment= THIS AIRCRAFT
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3.4.2.5 Interpreting the Syntactic Object. Rather than describing the process of syn-
thesizing a record for 'this aircraft’ in detail, we will return to the second goal of the
'construct’ clause for 'precede’, namely, to (14.2), which is now partly instantiated to
(21):-
(21) build__ER(np(0,[nnode(UAF,0), nnode(B-75,0)],
nnode(DEPLOYMENTS,0),

[pp([],TO,np(0,[ },nnode(MAURITIUS,0),[ D) ].ER).

The first argument of this clause is the nominalized sentence 'UAF B-75 DEPLOYMENTS
TO MAURITIUS .Accordingly, clause (21) will unify with the head of the second 'build_ER'
clause, namely (16), reproduced here as (22) in its partly instantiated form, complete
with its subgoals (22.1), (22.2), and (22.3):-

(22) build__ER(np(0,[nnode(UAF,0),nnode(B-75,0)],
nnode(DEPLOYMENTS,0),

[pp([],TO,np(0,[].nnode(MAURITIUS,0),[ ) ]),ER):-
(22.1) feat(DEPLOYMENTS, 'NOMZ'),

(22.2) change(np(0,[nnode(UAF,0),nnode(B-75,0)],
nnode(DEPLOYMENTS,0),
[pp([},70,np(0,[ ],nnode(MAURITIUS,0),[ ])]).T1),
(22.3) build__ER(T1,ER).

Goal (22.1) succeeds, and the system activates the 'change’ procedure

. Goal (22.2)
unifies with (23) below, which restructures the input nounphrase into a sentential
structure:-

(28) change(np(Det,[L1,X],nnode(W,0),L2),
s(np(Det,L1,nnode(X,0),[],),vg(__,_,0,W),0,0,L2)).
Upon unification with (22.2), (23) becomes Iinstantiated to (24):
(24) change(np(0,[ nnode(UAF,0),nnode(B-75,0)],
nnode(DEPLOYMENTS,O),
[pP([1,TO,np(0,[ ],nnode(MAURITIUS,0),[ )],

s(np(0,[ nnode(VAF,0)],
nnode(B-75,0),[]),
vg([1.[],0,DEPLOYMENTS),

’

0,
[Pp([1,TO,np(0,[ 1,nnode(MAURITIUS,0),[ 1) ])).

T1 is instantiated to the second argument of (24). The system now proceedes to exe-
cute goal (22.3) reproduced here In its instantiated form (25):-
(25) build__ER(s(np(0,[nnode(VUAF,0)],
nnode(B-76,0),[],
vg([1.{1,0,DEPLOYMENTS),
0,0,
[pp([1,TO,np(0,[ ],nnode(MAURITIUS,0),[ ))]),ER).

Execution of the 'built_ER' goal (25) eventually results in the activation of the ‘con-
struct’ clause for ‘deploy’ (26):-
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(26) construct(’deploy’ ,IT, [01,D01,T2]):-
object1 (IT, O1),
destination1 (17, D1),
time2 (IT, 72).

with 'IT" instantiated to the first argument of (26). The goal 'object1’ activates the
'object1’ procedure (28):-

(28) object1 (s(Subj,_, ,_, ), Slot):-
test__nhead(Subj, 'acraft’),
construct 'aircraft’, Subj, Slot).

The result is the instantiation:-
Subj = np(0,[nnode(UAF,0)],nnode(B-75,0),[ ]).
and 'Slot’ gets linked to 'O1°'.

The goal 'test__nhead' determines whether the headnoun(W) of a noun phrase 'np’ has

the feature Feature. It unifies with the clause for 'test_nhead’ (30), and results in the
Instantiations (31):-

(30) test__nhead (np (_,_,nnode(W,_)),Feature
(31) W= 'B-75'; Feature = 'acraft’

Goal (30) succeeds, and the system begins executing the second goal of (28) namely
(33):-

(83) construct (‘aircraft’, Subj,ER).

The second goal of (26) activates the 'destination’ procedure (35) and returns D1 = 'To
Mauritius'

(35) destination (s(__,_, ,_,Vmods), Slot):-
fill_slot(Vmods, ['nil’, 'to’,....], 'loc’, Slot).

The third goal of (26) activates the 'time2’ procedure (37), which returns T2 = "nil’.

(37) time2 (s(__,_._,_,Vmods), Slot):-
fill_slot( Vmods, ['at’, 'between’, 'by’, 'during’],
'tyme’, Slot).

t'mez (s(__s_q_ .,‘Vmods). S'ot):-
fill__slot(Vmods, 'tyme’, Slot).

time2 (__,nil).

This completes the execution of goal (26). As a result, the second output element (E2)

of the 'construct’ procedure for 'precede' is Instantiated to an event record of type
'deploy’, i.e.,
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4.5 Template Descriptor Selection: Methodological Issues

This section provides a general discussion of some fundamental issues perteining to the
selection of descriptors for templates relating to any subject domain in general, and
lists the descriptor system developed so far for the domain of aircraft activities in par-
ticular.

4.5.1 User-Related Considerations

The set of properties used for the description of events relating to a particular subject
domain must answer the what, who, where, when, and why information questions
relevant to the analyst's task. The definition of the descriptors and their organization,
therefore, must be consonant with the analyst's view of the world.

In general, any number of properties may be specified for any given class of entities.
However, not all properties have the same degree of usefulness in a given context. The
properties selected for inclusion in a template must, therefore, be sensitive to the task
the template is designed to support. Accordingly, the first criterion for selection is that
of relevance. Templates must include only that information which is particularly relevant
and useful to the task at hand, and not the fult range of facts one might find in an ency-
clopedia.

4.6.2 Linguistic Considerations.

In this subsection the discussion wili evolve around the linguistic criteria for descriptor
selection.

Broadly speaking, descriptors fall into two major categories those that involve "deep
case" relations, and those that involve inferences of a special kind. "Deep cases" are
binary relations which specify an event regardless of the surface realization of that
event description as a sentence or a noun phrase. The descriptors involving inferences
are restricted to those which have to do with the relations of entailment and presupposi-
tion.

Descriptors selected for inclusion in templates within a particular subject domain are
pragmatically determined from a linguistic and logical analysis of a representative sample
of intelligence messages. The criterion used for selection of "deep case" relations is
the following:

A deep case is a relation whose value is usually
specified for a given event type.

Thus, flight reports include a description of the object(s) which is (are) doing the flying
and frequen ly mention other relations such as the source of the flight, its direction, the
area overflown, the destination, and the mission. These properties are assigned the
status of "deep cases" in the sense specified above.

Pilots, however, or navigators, are very seldom mentioned in flight reports. They will be
treated differently, namely, they will be regarded as presupposition of the flight event.
The notions of entailment and presupposition are explicated in a later subsection. The
next section discusses the notion of "deep cases", which is the basis for defining intra-
template relations.

q4.5.2.1 The '‘Deep Case' System.

A "deep case" is a binary relation which holds hetween a predicate (usually, but not
necessarily, realized as a verb) and one of its arquments. Deep cases are used both in
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accounting for the relative acceptability of natural language sentences and in ¢ xplaining 3
how an intelligent system might understand language. This is done in terms of a “case
Structure" and "selectional restrictions". The case structure for any predicate is the
set of cases allowed in a description of that predicate. Selectional restrictions then
place semantic constraints on the objects which fill the case slots.

Each predicate has a number of cases. These may include adverbial modifiers, temporal
Indicators, and other propositions as well as the usual nominal cases. For example, the
case structure for the predicate "be enroute" might be (Object, Destination), where
each case may appear at most once. Object represents the notion “The thing which is
enroute". The meaning of Destination is clear. Both the Object and the Destination must 3
be present in the message text; i.e., they are obligatory cases which are required for 3
the event description to make sense. 1

Other predicates may have allowable cases which need not necessarily be realized in
the text. Such a predicate is “fly", for which only the “thing which is doing the flying" is
obligatory. The other allowed deep cases, such as Source, Destination, £xtent, Direc-
tion, Area, Mission, etc., are optional, i.e., they may or may not appear in the actual text.
Any of the following sentences satisties the descriptor structure for the fly template. d

The aircraft flew south. ’
The aircraft flew to Mombasa. e
The aircraft flew from London to Cairo.

The aircraft flew as far south as Cairo.

The alrcraft flew a reconnaissance mission over Uganda between
0012 and 0036 on 26 Feb 1975.

However, if the first and last sentences refer to a single aircraft, based on one message
or more than one, the additional information provides material to complete the empty
descriptor slots in the 'flight’ template representing that event. Selectional restrictions
vary from global constraints on the use of a case (e.g., "every agent must be animate")
to local constraints on the use of a case with a particular predicate (e.g., "the destina-
tion of a flight must be a geographic location such as a country, a city, or an airport").

The degree to which a case-based theory can account for the correct interpretation of
text depeads upon the way the cases mediate between surface forms and conceptual
structures. The transformation of surface forms into meaning representations is the
function of the procedural component of templates, which was described in Section O,

4.5.2.2 Presupposition and Entailment,

Presupposition and entailment are a subclass of inferences which appear to be closely
connected with the structure of language. They arise from two main structural sources:
one, the semantics of particular words, and two,from the syntactic (or relational) struc-
ture of sentences.

4.5.2.2.1 Entailment. A proposition P entails a proposition P’ if and only if in every con-
text in which P is true, P' is also true. For example, a plane cannot fly unless it has
taken off, cannot land unless it has been flying, must be in flight if it has taken off and
has not landed or been destroyed. Thus a take-off event entails a subsequent flight,
while a flying event entails a preceding take-otf. A landing event entails a preceding
flight, while a flying event entails a subsequent landing.

The above entailment relations are obligatory and specific to the respective event
predicate, i.e., a flight entails a previous take-off because of the meaning of "fly", while
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a landing entalls a previous flight because of the meaning of “land".

Such entailments predict the normal, expected, ordering of events in the air activities
world. Any violation of these expectations can serve as a warning to the analyst that
some external force has altered the predictied course of events.

For example, If a plane which is reported in flight does not land within expected limits of
time, it may have altered course, may have made a forcedlanding, or may have been des-
troyed. It is important that the analyst be alerted to any deviation from the expected.

4.5.2.2.2 Presupposition. A second, related concept is the notion of presupposition. A
proposition P (logicelly) presupposes a proposition P' if and only if P entails a P’ and ~P
entails P'. Therefore, whether P is true or false, P' must be true if P is to make any
sense at all. It is clear from the above definition that all logical presuppositions P' are

also entailments of P. Presuppositions play an important part in the meaning of many
words.

For example, in the air activities domain, a flying event presupposes that the thing which
does the flying is an aircraft. The presupposition is related to selectional restrictions
and is incorporated In the specification of what may fill the Object slot of the FLY event.

Certain aspectuals (e.g., begin, continue, end) are also associated with presuppositions.
For example, both the sentence "the plane continued flying" and its negation"the plane
did not continue flying presupposc that at some point the plane was flying.

The predicate "return" presupposes that the object which is reported to have returned
has been at that location before.

One of the important aspects of presupposition in language is that it informs the reader
that the presupposition must be considered true. Thus, if some aircraft is reported to
have returned to its normal operating area, it must be considered true that some time
before its return it took off from that particular area. Even if the report were negative,
l.e., stating that the aircraft in question had not returned to its normal operating area,
the presupposition that it had previously taken off from that area remains true.

Thus, presuppositions and entailments add Information which is conceptually associated
with some entity, but is very seldom mentioned explicitly.

This fact can be of assistance to the analyst in establishing the identity of objects
involved in evaents reported by ditferent sources in different ways, or perhaps in seeking
to establish links between events which otherwise might appear unconnected.

The descriptor system for the air activities sublanguage then, includes, in addition to
those discussed previously, the two descriptors related to inferences, namely, entail-
ments and presuppositions.

4.5.3 The Descriptor System for the Aircraft Domain Table 4-24 shows the descriptor
system so far developed for the air activities sublanguage.
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Table 4-24. Air Activities Descriptor System

|A. Motion related descriptors

Agent
Object

Source

Destination

Direction

Path
Extent
Limit
Altitude
Region

Status
Time specification

Event related descriptors
Mission

C. Aircraft related descriptors:

Equipment

Class

NATO designation

Nationality

Subordination

Homebase

Staging base

Set specification

Configuration
Inferences

Entailments

Presupposition

Animate instigator of the action.
The entity that moves or changes or
whose position or existence is being

described.

The location of the object at the

beginning of a motion.

Projected or actual destination
of the object at the end of the

motion.

Direction of motion of object at time

of observation.

Path or area traversed during motion.

Extent of motion.

Limit of motion.

Altitude of object at time of
observation.

General location of the action.

Begin, continue, end.

Time of observation or duration of

the event.

Purpose of flight.

The latter include objects normally associated with some
concepts but very seldom mentioned, (e.g., pilot, fuselage).
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1.0 Introduction

This section describes the implementation of the concepts of the first section, in the
form of the MATRES 1l system. The following subsections describe the various com-
ponents of the system. In some places, references are made to MATRES I, the product

of the contract directly preceding the current one. The reader is referred to the final
report of that contract for details.

Subsection 2 presents the data structures and algorithms for the sentence input and
grammar processing vocabulary; this vocabulary is essentially an extensive modification
of the MATRES | system. Subsection 3 describes the capabilities added in the area of
morphology. The implementation of the ERL evaluation process, including the abstract
machine which is the target language of ERL, is described in Subsection 4. The ERL
compiler, which is the only non-Forth module, is discussed in Subsection 5. The last

three subsections are intended as a guide to the Forth program files listed in Appendix
A, and provide glossaries of the Words in those files.
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2.0 Design of Lexical and ATN Processors
‘ 2.1 General Principles

All operations involving addresses use a set of Words which expect addresses, even if
the operations are simple; e.g. to increment an address "p" by "n" words (bytes), use "p
n a+" ("p n \a+"), where "a+" and "\a+" are defined as:

ra+ 2% +; :\a++;
Note that these words are not commutative, and expect the address on 20S.

Of course, any FORTH Word may be used as an action, but it should be remembered that
actions may have to be undone; therefore, action Words should not modify storage out-
side of the context blocks.

For the purposes of defining structure, we assume that structures will only be built and
examined, not modified or deleted; all dynamic storage will be released when a sentence
has been completely processed. Later enhancements may require a dynamic space rec-
lamation mechanism, but we don't make any provision for that now.

2.2 Data Structures

All the following structures reside in block storage to provide for uniformity of address-
ing, since we use a 16-bit addre.s for block storage similar to the one used in I&W Il for
data base pointers; these pointers cannot be distinguished from core addresses by their
content alone.

The lexical unit, as defined below, is different from that of I&W ll; here we treat dif-
ferent senses of words having multiple senses as distinct lexical units, and use forward,
backward and alternate pointers to link units within the sentence, tnus creating a "two-
dimenslonal" list of lexical units for the sentence.

A lexical unit has a string pointer, a string length, a forward pointer (to the next unit in
the sentence), a backward pointer (to the previous unit), an afternate pointer (to
the next sense unit for the current word or phrase), and a sense.

A register is empty or contains a pointer to a lexical unit or a list or a node.

A node has a label and one or more branches; a branch is empty or points to a lexical
unit or a list or a node; a /abel is the name of a Word which contains a branch
count and the label name (in the format of an ERL functor literal; see the section
on ERL).

A list has a zero branch count and a link to the first listel; a /iste/ has a pointer to a lex-
lcal unit or a list or a node, and a link; a /ink points to a listel or is zero.

2.3 Action Definitions

The actions for I&W |1l are totally different from the previous ones; for convenience, we
will repeat the syntax definitions from MATRES here, with new rules for declarations and
actions (note that "B" represents a blank that must be present).

grammar ::= 'GRAMMARP' start-state-name declaration* state+ 'BENDGRAMMAR’
start-state-name ::= state-name

declaration ::= 'BREGISTERY' register-name | 'BLISTH' list-name | number 'BLABELY'
label-name




register-name, list-name, label-name ::= Word
state ::= ":SP' state-name arc+ 'b;;’
state-name ::= Word
arc ::= ":WRDE' "B’ string """’ tail |
"MEMB’ (B’ ("B string "' )+ 'B) tail |
LCATH [ "= 1'[¥ feature+ 'B]' tail |
" TSTE' condition 'B!'p’ action* 'p=>p' state-name ', B’ |

"PSHB' [ condition "B’ ] action¥ '$TOB' state-name action* 'B=>K' state-name
o”"”' l

":POPY' [ condition 'B!'¥’ | action¥ ptr "B, |
":WJUMP}' state-name [ condition 'B!!pp' ] action¥ [ 'BADVE’ | 'BRETE’ ] 'b, B’
tail ::= [ condition ] 'p!'p" action* 'b=>p" state-name ’'p, B’
condition ::= condition condition ( 'BANDP’' | 'BORB’ ) | condition 'BNOTE' | cond
cond ::= pos test | Word )
test ::= [ =" ] "B string " | [ =" ] '[B feature+ 'B]' | 'B[EOS]H’
action ::= Word | ptr register-name 'BSETRP' | register-name 'BGETRP' | ptr list-name

"BADDLISTE' | ptr register-name 'WSENDRY' | register-name "BRETRY' | list-name (
"BSENDLE' | "BRETLE' )

ptr ::= pos | register-name 'BGETRB' | list-name | ptr+ label-name '$NODEY'
pos ::= 'pkB’ ! 'Pk+1p’ | 'BPk-1p' | register-name 'BGETRE'

A "ptr" construction returns to the stack a pointer to a lexical unit, a list, or a node; in
the latter case, the node is actually created by the Word NODE from the label and "ptr's
on the stack. The label preceding NODE must have been declared by a LABEL declara-
tion which gives the number of pointers to take from the stack; for example, the
declaration "4 L ABEL THING", together with the action "REG @ *+1 %*-1 LIST THING NODE"
creates a node labelled THING with four branches, the first pointing to the list LIST, the
second to the previous lexical unit, the third to the next lexical unit, and the fourth to
what REG points to. A pointer to the list is returned to the stack. Note that the order of
pointers in the node is the reverse of the order in which they appear in the text.

ADDLIST adds a ptr to the front of the specified list; thus, as with nodes, the elements
of the list will be in reverse order from that which they were added.

SETR is used to set a register to a value, and GETR is used to retrieve the value of a
register. GETR may be used in tests, with registers which peint to lexical units

SENDR and SENDLU are used only in the preactions of a PUSH node. SENDR sends a value
to a register at the level of the subnet (registers and lists are normally empty on entry
to a subnet). Similarly, SENDL sends the current value of a list to the subnet level.

RETR and BRETL are used only in the postactions of a PUSH node, and are compiementary
to SENDR and SENDL, in that they retrieve register and list values, respectively, from the
subnet values at the time of the POP.




A POP arc must have a "ptr" as its last (or only) action, which will cause the "ptr" to be
assigned to ¥ at the next level up.

2.4 Internal Structure and Algorithm Specifications

2.4.1 Layout of Block Storage All the system structures except the compiled ATN reside
in block storage to provide for uniformity of addressing, since we use a 16-bit address
for block storage similar to the one used in I&W [l for data base pointers; these pointers
cannot be distinguished from core addresses by their content alone.

The first structure in block storage is the lexicon, starting at the block specified by the
constant SLEX. The variable ELEX holds a pointer to the last byte of the lexicon. Next,
starting on the next block boundary, will be the text of each input sentence, followed by
the chart for that sentence, and then the stack of state frames. The base block number
for all pointers except within the lexicon will be contained in the constant SBASE.

2.4.2 Structure of the Input Sentence As described below, each input sentence will be
read and stored in FORTH block storage in two parts: the actual character string
comprising the sentence, and a structure of entries corresponding to the lexical units
(words or phrases) found in the sentence. Each such entry has the following structure:

Item Length
Address of char_cter string for unit 1 word
Length of character string (in bytes) 1 word
Pointer to next unit 1 word
1
1

Pointer to previous unit word
Pointer to alternate unit word
Feature vector NWRD words

At the end of the list of entries Is a "pseudo-entry" consisting of all zero entries except
for the previous unit pointer, to mark the end of the sentence.

This structure allows for a list of alternate senses for a given word in the sentence, and
also far handling phrases. For example, it may or may not be appropriate to treat a given
sequence of words as a single lexical unit at a particular place in a sentence; with this
structure, we could build, as alternates, both the lexical unit corresponding to the
phrase interpretation and the list of units corresponding to the string of words (although
we don't do that in this system). We will call the structure built for a sentence the chart
of the sentence.

The following variables are set to provide access to these structures:
TXTP points to the first character of the sentence text.

SENTP points to the first lexical unit of the sentence chart, and also marks the end of
the sentence text.

FRAMSTRT points to the base of the first state frame for the sentence, and also marks
the end of the chart for the sentence.

2.4.3 Text Input and Sentence Construction Text input is performed by the Word
GETTXT and its auxiliary Words. The FORTH Word WORD is used to get the next string
of nonblank characters, and CHKWRD strips off trailing commas and periods, and returns
an Indication if the punctuation was a period; this is used to terminate the sentence
text. Words will be separated by one blank, and a period set off by blanks will be
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appended to the text (by TEXFiN).

MAKESENT makes the chart of the sentence, creating a lexical unit for each sense of
each word or phrase found in the lexicon, and linking them as appropriate. Its operation
is discussed in more detail in the next section.

2.4.4 ATN Processor - Data and Program Structures The ATN compiler produces a Word
in the dictionary for each state, having code structures for each arc; these are
described below. By "code" is meant a COLON-style sequence of Words implementing a
particular operation. Optional elements of a structure are delimited by square brackets ~
“[J*. All states are encompassed in a scope block named "GRMDF".

2.4.4.1 State Structure

State entry code
Arc structures for arcs of state
End-of-state code

2.4.4.2 Arc Structures (by arc type)

WRD, MEM, Arc entry code

CAT, TST Code for tests - leaves 1 or 2 truth values on stack
Code for !
[Code for actions]
Code for => and state name

PUSH Arc entry code
[Code for tests
Code for !1]
{Code for preactions]
Code for TO and state name |
[Code for postactions] -
Code for => and state name

i

POP Arc entry code
[Code for tests
Code for !!]
[Code for actions]
Code for returning to calling arc

JUMP Arc entry code - 3rd and 4th words are skip around state
name
[Code for tests
Code for ']
[Code for actions]
[Code for ADV or RET]
Code for jumping to state

In all arc types, the first two words of the"arc entry code" comprise a word pointing to
the next arc (or to the end-of-state code), then the FORTH-style code word (a pointer
to COLON).

2-5




2.4.5 Operation of the ATN Processor The operation of the ATN executive processor for
state-to-state transitions would be almost trivial were it not for the fact that, for natural
language processing, the ATN must be considered non-deterministic. For example, it is
possible to have two arcs leaving a given state with the same tests but different desti-

nation states. As a result, it must be possible to backtrack along a path to a previous
state, undoing any actions along the way.

In MATRES, this is implemented as follows: when an arc is successfully traversed, the
current computation context is pushed onto the dictionary, and a new context esta-
blished. Thus the stack of contexts describes the currently active path thiouvgh the
ATN. When the last arc in a state is tried unsuccessfully, backtracking is done by simply
popping the stack and restoring the previous context, which includes a specification of
the next arc to try in the (once again) current state.

The context referred to above, which will subsequently be referred to as a state frame
to avoid confusion with the linguistic sense of "context", comprises a base pointer
(FRAMBASE) and a set of value cells associated with various item names. Each name is
defined as an offset from the base pointer by the ITEM defining Word. The dictionary
pointer is kept pointing just past the current frame, and the base pointer is pointing to a
"hidden" cell containing the previous base pointer; thus a new state frame may be
defined by simply moving the base pointer to agree with the dictionary pointer and set-
ting the dictionary pointer above the item with the highest offset, and an old frame
restored by setting the dictionary pointer to the base pointer and restoring the base
pointer from the cell it points to. This scheme allows the dynamic addition of data to the
current frame by simply advancing the dictionary pointer.

The following data items are present in each stack frame:

STAR: special register, kept identical to LEX except on return from a PUSH

LEX: pointer to current lexical unit

STAAT: pointer to current state structure

ARC: pointer to current arc structure

ARCNO: current arc number within state; used for trace printing

RETRN: contains the IC to return to on POP, and the base pointer associated with the

state from which the last PUSH was done

Register values and list heads are allocated above these items, followed by dynamic
allocations of nodes and list elements.

The Word NEWFRAME is used to establish a new frame. It sets up a new state frame as
described above and copies all the previous item data into it. The complementary word,
OLDFRAME, restores the previous frame as described above.

The actual transition to a new state is done in two steps. First, the code doing the tran-
sition, which has the name of the new state stored within it, calls FNDSTATE, which finds
that name in the dictionary and returns its code word on the stack and in STAAT. Next,
a SKPTO is called, and it transfers control to the address on the top of the stack. Note




that this is done at the same level of the return stack.

2.4.5.1 Algorithms for ATN Processor Elements

Element Algorithm
State Entry Set ARC to first arc in state, go through ARC
Arc Entry NEWFRAME

! If two conditions present, AND them;

If top of stack true, put pointer to next lexical unit on stack
{current unit if JUMP arc); if PUSH arc, set SNDP to tup-of-
dictionary in case a SENDR is done;

If false, OLDFRAME, set LEX to next alternate lexical unit (if no
next alternate, reset to first alternate, update ARC), go through

ARC
=> Top of stack->LEX, get called state, go to it
TO Assign "IC+1" and previous base pointer to RETRN, clear registers

and lists, move in any SENDRs from top of dictionary, get called
state, go to it

POP Return Get IC and base pointer from BRETRN, copy base pointer's registers
and lists, arc, state, and return data into current frame, TOS into
STAR, go to postactions through IC

End of State Treat like false branch of !!

ATN Start Set: LEX to first lexical unit, STAAT to ATN start state, RETRN to
ATN finish code; go through STAAT

ATN Finish Print structure in STAR if tracing; return to caller of PARSE

2.4.5.2 Code Structures for Tests Here we show the structures compiled for each type
of test in the arc condition section. In the case of multiple tests, two consecutive tests
will be followed by a reference to AND or OR. A capitalized word shown here means a
reference to the appropriate Word.

The Word SKIP causes the IC to be set to the contents of the following word, thus skip-
ping intermediate words. CMPWRD and NEGWRD compare the literal string pointed to by
TOS with the string from the lexical unit pointed to by 20S, and return true or false,
respectively. TSTCAT and NEGCAT check that the feature vector pointed to by TOS is a
subset of the feature vector in the !»xical entry pointed to by 20S (i.e. that the logical
AND of the vectors is equal to the vector pointed to by TOS). [EOS] checks that TOS
points to the end-of-sentence lexical unit. LIT puts the following word on TOS.




